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Abstract. We present a microscopic theory and results of atom scattering calculations to determine the
dispersion of surface modes (ripplons) of superfluid helium-4 nanodroplets, expanding previous work [J.
Chem. Phys. 115, 10161 (2001)]. A quantum transport formalism is adapted to the many-body scatter-
ing problem, yielding both elastic and inelastic fluxes. We demonstrate that, in analogy to the dynamic
structure function S(k, ω) obtained from neutron scattering, a dynamic structure function σ(k, ω) can be
obtained from 3He scattering. The 3He dynamic structure function σ(k, ω) is sensitive to surface dynamics,
whereas the neutron dynamic structure function S(k, ω) is dominated by bulk-like excitations, in partic-
ular by rotons. Unlike for neutron-scattering, the total inelastic cross section for atom-scattering on 4He
nanodroplets is large which we believe makes experimental detection feasible. We also show that scattering
identical particles, i.e. 4He atoms, does not provide information about the dispersion of surface modes.
Instead, inelastically scattered 4He atoms preferably lose roughly half their energy.

PACS. 36.40.-c Atomic and molecular clusters – 67. Quantum fluids and solids; liquid and solid helium

1 Introduction

Superfluid 4He nanodroplets have found use for spec-
troscopy of molecules and complexes which are cooled to
0.3–0.4K by the 4He environment while the main spectral
features are not altered. The solvation structure and the
dynamics of dopants in 4He have been investigated exper-
imentally and theoretically [2,3], they are overall well un-
derstood. The process of capturing an atom or a molecule
in 4He droplets, i.e. inelastic scattering/absorption off/by
4He droplets is less well understood. We present corre-
lated basis function (CBF) calculations of the scattering
cross section of 3He atoms and compare to 4He scattering
cross sections. In the present work, which complements a
previous study on this topic [1], we focus on the possibil-
ity to use atom-droplet scattering to probe excitations in
the droplets. The methods presented below are immedi-
ately applicable to ultra-cold atomic gases in the regime
of Feshbach-resonance enhanced interactions. Advances of
experimental techniques should make such scattering ex-
periments feasible.

2 Theory

We give a brief overview of the calculation of excited states
of a non-uniform many-boson system (pure and with im-
purities) using CBF theory. A full description can be found

a e-mail: eckhard.krotscheck@jku.at

in references [1,4]. Let Ψ0 be the N -body ground state of
the microscopic Hamiltonian H = T + V , where V is the
2-body interaction operator. The wave function of the per-
turbed system is written as

Ψ(t) =
eδU(t)/2Ψ0

〈Ψ0|e�e U(t)|Ψ0〉

δU(t) =
N∑

i=1

δu2(ri; t) +
∑

i<j

δu2(ri, rj ; t) + . . .

We determine the fluctuations by an action principle: we
define an action integral with respect to Ψ(t) as

S =
∫ t2

t1

dt 〈Ψ(t)|H + U (ext)(t) − i�
∂

∂t
|Ψ(t)〉 = 0. (1)

Demanding stationarity of S with respect to all compo-
nents of the excitation operator δU(t),

δS
δu∗

1(r0; t)
= 0,

δS
δu∗

2(r0, r1; t)
= 0, . . . (2)

is equivalent to the time-dependent Schrödinger equation.
Fluctuations that involve simultaneously n particles de-
crease in importance with increasing n, therefore triplet
correlations δu3 and higher correlations are neglected. The
resulting time-dependent coupled equations for δu1 and
δu2 can be linearized in the limit of weak external poten-
tial U (ext)(t). These coupled linear equations of motion
are then solved approximately [1].
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Specifically for a scattering situation, the equations of
motion can be written as a single-particle wave equation
with a non-local, non-Hermitian, energy-dependent self
energy Σ (expressed in terms of ground state quantities,
see Ref. [1])

− �
2

2mX

1√
ρX
1 (r)

∇ρX
1 (r)∇ 1√

ρX
1 (r)

ϕω(r)

+
∫

d3r′ Σ(r, r′; ω)ϕω(r′) = �ω

∫
d3r′ S(r, r′)ϕω(r′),

(3)

where X stands for either 4He or 3He, ρX
1 (r) = ρX

1 (r) is
the respective ground state probability density, S(r, r′) is
the static structure function in the 4He case and δ(r− r′)
in the 3He case, and ϕω(r) is the elastic channel wave func-
tion for an incident particle of energy E = �ω+µX, where
µX is the chemical potential of species X . Asymptotically,
ϕω(r) has the usual scattering form

ϕω(r) → eikr + f(θ)eikr/r. (4)

From ϕω(r) we can calculate elastic cross sections σel and
total inelastic cross sections σinel (i.e. what is missing from
the elastic channel). For more information about the dy-
namics of inelastic processes we need to calculate trans-
port currents, as outlined in the following section.

3 Quantum transport

For the calculation of inelastic transport currents, we have
to expand the expectation value of the current operator
ĵI(r0) to second order in the correlations δU(t), since in
first order, it carries no net particle flux

j(2)(r0) =
1
4

〈
Ψ I

N+1

∣∣ δU∗ ĵI(r0) δU
∣∣Ψ I

N+1

〉
〈
Ψ I

N+1 | Ψ I
N+1

〉 (5)

= j(2)el (r0; t) + j(2)inel(r0; t). (6)

Analysis of the asymptotic behavior of inelastic currents
j(2)inel allows the calculation of inelastic scattering σinsc and
adsorption σad cross sections, and also differential cross
sections, such as the angular dependence of inelastically
scattered particles, dσinsc/dΩ, their energy distribution,
dσinsc/dEout, etc. Of particular interest are cross sections
which probe the 4He droplet properties, such as the prob-
ability σ(kt, Et) for a particle (incident energy Ein, mo-
mentum kin) to transfer energy Et and momentum kt

Et = Ein − Eout , kt = |kin − kout|

to the 4He droplet. σ(kt, Et) is the atom scattering analog
to the dynamic structure function S(k, ω) which is mea-
sured by neutron scattering. Details on how to explicitly
calculate asymptotic currents from the definition (5) can
be found in reference [1].
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Fig. 1. Calculated dynamic structure function S(k, ω) of bulk
4He (left) and of a droplet 4He1000 (right), on a log-scale. The
circles represent the experimental phonon-roton spectrum in
bulk 4He. The line in the right panel is the ripplon dispersion
of a free helium surface ω2(k) = σk3/m4ρ∞, where σ is the
surface energy and ρ∞ the equilibrium density.

4 Results

We have calculated elastic and inelastic cross sections of
4He and 3He scattering off 4He nanodroplets up to sizes
of N = 1000. Results for total (i.e. non-differential) cross
sections have been published in reference [1]. We focus
here instead on differential cross sections, with emphasis
on the determination of dynamic properties (dispersion
relations) of the 4He droplet by atom scattering. For bulk
4He as well as for 4He films, these properties, manifested
in the dynamic structure function S(k, ω), have been mea-
sured by neutron scattering [5,6]; the same type of exper-
iments for 4He nanodroplets is experimentally very diffi-
cult. Nonetheless, S(k, ω) was calculated for droplets with
CBF theory [7]. In Figure 1 we compare S(k, ω) for bulk
4He and for a droplet 4He1000. Comparison with S(k, ω)
measured in bulk (in Fig. 1, the experimental bulk dis-
persion is shown [5]) indicates that CBF theory overesti-
mates the energies but is a significant improvement to the
Bjil-Feynman spectrum [8]. S(k, ω) of a 4He1000 droplet is
shown in the right panel of Figure 1. The phonon-roton
branch of the droplets can be clearly seen (broadened by
confinement) as well as the lower-lying surface wave (rip-
plon) excitations. For both bulk 4He and droplets, S(k, ω)
is found to be dominated by rotons.

The neutron scattering cross section S(k, ω) has to
be compared to the cross section σ(kt, Et). σ(kt, Et) for
3He is shown in Figure 2 for four droplet sizes N =
112; 400; 700; 1000. Firstly, we observe that, after appro-
priate scaling by the respective total cross section pro-
portional to the cross sectional area, the N -dependence
is weak apart from the lowest energy features, which are
caused by the excitation of ripplons. The energy and
momentum dependence of σ(kt, Et) is evidently different
from S(k, ω), for which ripplon, phonon, and roton exci-
tations could be readily identified (right panel of Fig. 1).
Unlike for S(k, ω), there is no particularly strong signal
in σ(kt, Et) which we can identify with the roton excita-
tion (which from S(k, ω) we know to be present in 4He
droplets down to small sizes [7]). However, we will show
further below that there is a small increase in σ(kt, Et) at
the roton energy.
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Fig. 2. (Color online) σ(kt, Et) of 3He scattering at 4HeN (incident energy E = 26 K), for N = 112; 400; 700; 1000. For
comparison, the respective ripplon dispersion is shown with a line. σ(kt, Et) has been broadened by ∆Et = 0.2 K, and scaled
by the cross section ratio (Nref/N)2/3 relative to the largest droplet, Nref = 1000.
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Fig. 3. (Color online) σ(kt, Et) of 3He scattering at 4He1000,
separated into ripplon (left) and the other contributions
(right).

To relate the low-lying excitation in Figure 2 to the rip-
plons, we first have to express droplet excitations, which
are quantized by the angular momentum �, in terms of
the linear momentum quantum number k. This is achieved
through k2 = 3�(� + 1)/(5r2

rms), where rrms is the rms ra-
dius of the droplet. The ripplon dispersion thus obtained
is show as a line for each size N in Figure 2. This com-
parison shows that with increasing N , σ(kt, Et) becomes
sensitive to ripplons, and reproduces correctly the ripplon
dispersion relation. To demonstrate this we have separated
the contributions to σ(kt, Et) coming from exciting rip-
plons and from higher excitations in Figure 3 — something
which is easy in an analytic theory like the CBF theory,
but would not be possible in an experiment where only the
complete cross sections of Figure 2 would be measured.

Finally, we note that the phonon dispersion cannot be
determined from σ(kt, Et). Instead we observe an interfer-
ence pattern independent of N that needs further analysis
for a full understanding.

The cross section σ(Et), i.e. the probability that the
impinging atom scatters inelastically and transfers energy
Et to the 4He droplet, is obtained by integrating σ(kt, Et)
over kt. In Figure 4 we show σ(Et) for 3He (incident en-
ergy 26K) scattered at 4He droplets between sizes N = 70
and N = 1000. At low transfer energies, we see the signa-
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Fig. 4. The cross section for energy transfer σ(Et) for 3He
scattering at 4HeN , is shown for incident energy E = 26 K,
N = 70; 112; 200; 400; 700; 1000, where the higher curves cor-
respond to larger N .

ture of the large cross section for 3He-ripplon scattering;
the information about the ripplon dispersion is of course
lost after integrating over the momentum. For interme-
diate transfer energies we see a broad band of phonon
scattering events. Then, around 17–18K, there is a small
peak for all but the smallest sizes. This is the energy of
the roton, which is higher than the true roton energy due
to approximations employed in our implementation of the
CBF method. Hence, despite some lack of quantitative
agreement, σ(Et) shows that 3He also couples to the ro-
ton, albeit with smaller probability than to the ripplon.

Up to now, we have only considered impurity (3He)
scattering, motivated by its analogy to neutron scattering
cross sections. What about 4He scattering? The inter-
action between 3He and 4He is the same as among 4He
atoms, and the mass difference is only 25%. We expect
qualitative differences between 3He and 4He cross sections
of 4He droplets because of Bose symmetry, see also the
equation for the elastic channel wave function (3). Indeed,
the energy-momentum transfer probability σ(kt, Et) turns
out to be less structured, and is not shown here. In par-
ticular, σ(kt, Et) shows basically no kt dependence, thus
ruling out the possibility to obtain dispersion information
from σ(kt, Et) for 4He scattering. In order to obtain
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Fig. 5. The cross section for energy transfer σ(Et) for 4He
scattering at 4He1000, for incident energies E = �ω+µX , �ω =
16; 17; 18; . . . ; 36 K. σ(Et) is offset for growing energy for better
visibility. The star indicates σ(Et) at half the incident energy,
Et = �ω/2.
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Fig. 6. Same as Figure 5 for 3He scattering.

energy-related features, we have calculated σ(Et). In Fig-
ure 5, we show σ(Et) for 4He scattering at a large droplet,
4He1000, for incident energies between 16 K and 36 K.
Figure 6 shows the corresponding result for 3He scattering
for comparison. As for 3He scattering, a high cross section
for ripplon scattering can be observed for 4He scattering
which saturates with increasing incident energy. Interest-
ingly, for 4He scattering σ(Et) lacks features related to
roton coupling, although we point out that the roton can
be detected in the elastic cross section σel (see Ref. [1]).
Instead, with increasing energy, σ(Et) becomes peaked at

half the full incident energy (i.e. including the chemical
potential, �ω = E − µ4) of the 4He atom, at Et = �ω/2
(indicated by a star in Fig. 5). That means the incident
energy is preferably split in half, shared by two out-going
4He atoms. It will be interesting to investigate the angular
dependence of σ(Et), dσ(Et)/dΩ, in search for interfer-
ence effect due to Bose symmetry and for an explanation
of the peak at Et = �ω/2. This result for 4He scattering
is in contrast to the result for 3He scattering discussed
above and shown in Figure 6 for N = 1000, where σ(Et)
is distributed widely and no peak is found at Et = �ω/2.
Instead, a small peak at the energy of the roton develops
and saturates with increasing incident energy. We finally
note that for certain incident energies, σ(Et) can exhibit
resonances, as evidenced by sharp peaks. Discussion of
these details of σ(Et) is beyond the scope of the present
paper.

For scattering experiments with 4He droplets, the size
distribution [9] of droplets generated by expansion from
a nozzle has to be taken into account. As evident from
Figure 2, the N -dependence of σ(kt, Et) is essentially just
a proportionality to the cross sectional area, therefore the
size distribution is no impediment to measuring σ(kt, Et).
The energy of 3He transferred to the droplet may be accu-
rately measured by spin-echo experiments [10], while for
4He scattering only bolometric methods would seem fea-
sible.
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